Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 153(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33836065

RESUMO

The N2A segment of titin is a main signaling hub in the sarcomeric I-band that recruits various signaling factors and processing enzymes. It has also been proposed to play a role in force production through its Ca2+-regulated association with actin. However, the molecular basis by which N2A performs these functions selectively within the repetitive and extensive titin chain remains poorly understood. Here, we analyze the structure of N2A components and their association with F-actin. Specifically, we characterized the structure of its Ig domains by elucidating the atomic structure of the I81-I83 tandem using x-ray crystallography and computing a homology model for I80. Structural data revealed these domains to present heterogeneous and divergent Ig folds, where I81 and I83 have unique loop structures. Notably, the I81-I83 tandem has a distinct rotational chain arrangement that confers it a unique multi-domain topography. However, we could not identify specific Ca2+-binding sites in these Ig domains, nor evidence of the association of titin N2A components with F-actin in transfected C2C12 myoblasts or C2C12-derived myotubes. In addition, F-actin cosedimentation assays failed to reveal binding to N2A. We conclude that N2A has a unique architecture that predictably supports its selective recruitment of binding partners in signaling, but that its mechanical role through interaction with F-actin awaits validation.


Assuntos
Actinas , Sarcômeros , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Sítios de Ligação , Conectina/genética , Conectina/metabolismo , Sarcômeros/metabolismo
2.
Sci Rep ; 6: 32371, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582320

RESUMO

The major human pathogen Streptococcus pneumoniae is a leading cause of disease and death worldwide. Pneumococcal biofilm formation within the nasopharynx leads to long-term colonization and persistence within the host. We have previously demonstrated that the capsular surface-associated pneumococcal serine rich repeat protein (PsrP), key factor for biofilm formation, binds to keratin-10 (KRT10) through its microbial surface component recognizing adhesive matrix molecule (MSCRAMM)-related globular binding region domain (BR187-385). Here, we show that BR187-385 also binds to DNA, as demonstrated by electrophoretic mobility shift assays and size exclusion chromatography. Further, heterologous expression of BR187-378 or the longer BR120-378 construct on the surface of a Gram-positive model host bacterium resulted in the formation of cellular aggregates that was significantly enhanced in the presence of DNA. Crystal structure analyses revealed the formation of BR187-385 homo-dimers via an intermolecular ß-sheet, resulting in a positively charged concave surface, shaped to accommodate the acidic helical DNA structure. Furthermore, small angle X-ray scattering and circular dichroism studies indicate that the aggregate-enhancing N-terminal region of BR120-166 adopts an extended, non-globular structure. Altogether, our results suggest that PsrP adheres to extracellular DNA in the biofilm matrix and thus promotes pneumococcal biofilm formation.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/metabolismo , Membrana Celular/metabolismo , DNA Bacteriano/química , Furina/metabolismo , Expressão Gênica , Conformação de Ácido Nucleico , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...